Analysis of MODIS LST Compared with WRF Model and in situ Data over the Waimakariri River Basin, Canterbury, New Zealand

نویسندگان

  • Mohammad Sohrabinia
  • Wolfgang Rack
  • Peyman Zawar-Reza
چکیده

In this study we examine the relationship between remotely sensed, in situ and modelled land surface temperature (LST) over a heterogeneous land-cover (LC) enclosed in alpine terrain. This relationship can help to understand to what extent the remotely sensed data can be used to improve model simulations of land surface parameters such as LST in mountainous areas. LST from the MODerate resolution Imaging Spectro-radiometer (MODIS), the modelled surface skin temperature by the Weather Research and Forecasting (WRF) mesoscale numerical model and the in situ measurements of surface temperature are used in the analysis. The test-site is located in a mountain valley in the Southern Alps of New Zealand. Geospatial analysis in GIS is used to relate pixels, grid-cells and points from the MODIS LST, model simulations and the in situ data, respectively. Differences between LST from MODIS, the WRF model and the in situ data are presented with respect to surface LC at different times of day. Initial results from regression analysis of the three datasets showed a goodness of fit R coefficient of 0.77 for the model simulations and 0.35 for the MODIS LST. These values improved significantly when time-lags were considered and the few outliers were removed, giving R values of 0.80 for the model and 0.73 for the MODIS LST. These results show that the WRF model correlates better with the in situ measurements over various LC types in this region compared with the MODIS LST. Longer time-series, however, are required to draw more robust conclusions about the applicability of the MODIS LST product for improving WRF simulations over alpine complex terrain. Remote Sens. 2012, 4 3502

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trend in Bare Ground from Tussock Grassland Surveys, Canterbury, New Zealand

Trend in the proportion of bare ground in some Canterbury tussock grasslands is analysed using records of vegetative cover from Fox Peak, South Opuha River (1963-1985); Porter River (1976-1984); Waimakariri Basin (1962-1978); and central Waimakariri River (1947-1981). The overall proportion of bare ground changed little in all four surveys. The lowest altitude site at Fox Peak and a low altitud...

متن کامل

Retrieval of Land Surface Temperature over the Heihe River Basin Using HJ-1B Thermal Infrared Data

The reliable estimation of spatially distributed Land Surface Temperature (LST) is useful for monitoring regional land surface heat fluxes. A single-channel method is developed to derive the LST over the Heihe River Basin in China using data from the infrared sensor (IRS) onboard the Chinese “Environmental and Disaster Monitoring and Forecasting with a Small Satellite Constellation” (HJ-1B for ...

متن کامل

Multi-Temporal Evaluation of Soil Moisture and Land Surface Temperature Dynamics Using in Situ and Satellite Observations

Soil moisture (SM) is an important component of the Earth’s surface water balance and by extension the energy balance, regulating the land surface temperature (LST) and evapotranspiration (ET). Nowadays, there are two missions dedicated to monitoring the Earth’s surface SM using L-band radiometers: ESA’s Soil Moisture and Ocean Salinity (SMOS) and NASA’s Soil Moisture Active Passive (SMAP). LST...

متن کامل

Simulation of rainfall temporal distribution pattern using WRF Model (case study of Parsian dam basin)

During the rainfall, the intensity of precipitation varies. Changes in the amount of precipitation during an event of rainfall are effective in the resulting of flood and its intensity. Knowledge of how rainfall changes over time during rainfall is determined by temporal distribution pattern of rainfall. For this purpose, availability of short-term time scales rainfalls data are important that ...

متن کامل

Impact Analysis of Climate Change on Snow over a Complex Mountainous Region Using Weather Research and Forecast Model (WRF) Simulation and Moderate Resolution Imaging Spectroradiometer Data (MODIS)-Terra Fractional Snow Cover Products

Climate change has a complex effect on snow at the regional scale. The change in snow patterns under climate change remains unknown for certain regions. Here, we used high spatiotemporal resolution snow-related variables simulated by a weather research and forecast model (WRF) including snowfall, snow water equivalent and snow depth along with fractional snow cover (FSC) data extracted from Mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2012